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ABSTRACT

Thus thesis utilizes data on the time to failure of individual light valves
to represent the random process of all failures at a many-valve training unit. This
process governs the demand for replacement spares. The light valve replacement
model, with finite spares, is based on theoretical results concerning the Poisson
tendency for a superposition of renewal processes. Graphical analysis and a
simulation verify that the theory can apply under practical circumstances. The model

is distinguished by its applicability for use in standard spreadsheets; no specialized

statistical features are required.
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EXECUTIVE SUMMARY

A. PURPOSE

The purpose of this thesis is to develop a model requested by the Department of the Navy’s
Naval Air Systems Command (PMA-205), which determines the estimated time for its current
inventory of spare light valves to be exhausted. The estimated time for all spares to fail is based
on light valves’ historical failure data and on renewal theory arguments. Once developed, two

allocation systems for the inventory of spares are presented.

B. BACKGROUND

Martin Marietta Corporation stopped production of the Talaria Light Valve used in U.S.
Navy and Marine Corps training simulators as a video display device. The effect of this loss of
production precipitated the question of the life expectancy of the Navy’s stockpiles of ready for
installation (RFI) light valves (approximately 184 as of October 6, 1995).

A repair facility has been contracted to refurbish non-ready for installation (Non-RFI) or
burnt light valves to replace the current stockpiles of RFI light valves as they are depleted. The
repair facility, Vacuum Optics, located in Tucson, Arizona is under contract to repair light valves
at a cost of $8,050.00 per tube. In order to plan for purchasing refurbished light valves, a model

is needed to estimate the rate of failures of Talaria Light Valves.

C. RESULTS

A quantitative rationale for estimating spare valve consumption time has been based on the
following steps. Historical data on times to failure of each type of light valve may be used to
estimate each type’s time-to-failure distribution. A non-parametric representation has been
employed since evidence of a bimodal distribution for some valve types rules out a simple
parametric (Weibull) model. Then future successive failures of valves in the sockets of a training
device at a particular site are estimated to occur according to the above distribution and are
assumed to form a renewal process for each socket. The superposition of these renewal processes

represents the demand for spares by all sockets of a unit at a site, and is shown to be

x



approximately a Poisson process. Use of this information allows the distribution of time to
consume a fixed number of spares to be estimated; it is approximately of gamma form. That
distribution can then guide spare provisioning at sites. For example, a policy of 100% sparing
(maintaining at least one spare for each socket at a site) can control the risk that a site will fail to
meet its operational schedule.

A complication arises in that repaired or refurbished valves appear to have a shorter time to
failure than do members of the original set. This information is, to date, based on experience with
only six repaired valves. If repaired bulbs are blended with original bulbs, the spares consumption
rate will increase and the spares allocation policy must be reexamined. That reexamination is

beyond the scope of this thesis.




L. INTRODUCTION

A. BACKGROUND

On December 15, 1993, Martin Marietta Corporation announced its intentions to stop
production of the General Electric Projector and the Talaria Light Valve used in U.S. Navy and
Marine Corps training simulators as video display devices. The effect of this loss of production
precipitated the question of the life expectancy of the Navy’s stockpiles of ready for installation
(RFT) light valves (approximately 184 as of October 1995). The Talaria Light Valve is advertised

by its manufacturer to last approximately 4,000 hours. However, historical data from simulator
sites has shown this value to be variable and somewhat overstated in actual operation.

The inventory of light valves is under the direct supervision of the Aviation Supply Office
(ASO) Philadelphia, Pa., which has contracted with a repair facility to refurbish non-ready for
installation (Non-RFI), or burnt, light valves to replace the current stockpiles of RFI light valves
as they are depleted. The repair facility, Vacuum Optics, located in Tucson Arizona currently
repairs light valves at a contracted cost of $8,050.00 per tube. To plan for purchasing refurbished
light valves, a method is needed to estimate the rate of failures of Talaria Light Valves. This
thesis develops a statistical approach (based on a Poisson Process model) to predict the life of

spare Talaria light valves available at a training location.

B. OBJECTIVES
This thesis has three primary objective areas. First, it models the distribution of lifetimes of
Talaria Light Valves. Parametric and non-parametric options are considered. Next, it

suggests two alternative spares allocation models that are easily adaptable to a spreadsheet

such as Lotus or Excel. The allocation models presented make it easier to predict and track spare

lifetimes and to provide an estimate of the date on which the inventory of spare Talaria Light

Valves will be exhausted. Fiﬁally, it provides suggestions for extending the life of light valves.
The modeling of lifetimes is based on theoretical results concerning the superposition of

renewal processes, and upon a simulation verification that the theory should apply under




practical circumstances, i.e., when a training unit has finitely many valves in simultaneous use.

C. SCOPE

This thesis will deal directly with the following two questions.

1. Can we estimate, with some level of accuracy, how long the current inventory of spare

light valves will last?

2. Do simpler system models exist for spares usage?
Current historical data, as provided by the simulator operators, is in the form of operating times
since installation for burning light valves, and failure times for burnt light valves waiting for
refurbishment; no distinction between the sockets in which light valves were installed is made.
Using these historical data, this thesis provides simple formulae that can be applied at the
operational level as a predictor of spares utilization. User requested requirements of this analysis
are, any methodology developed must be conformable to a spreadsheet, use historical quarterly
data as provided by the sites, and be easy to apply at the operational level. -

The model that has been developed avoids the complexities of fitting a theoretical distribution

of the data which would make computations and understanding difficult. Throughout this thesis a
set of failure-time data (hours of operation from installation until failure) obtained from the
Miramar training unit in Appendix A will be utilized for examples.

D. PREVIEW

Chapter II. Two alternative model options are considered for lifetime distributions.

The parametric approach is based on a bimodal Weibull distribution while the
non-parametric method is based on using given data to empirically fit a
distribution.

Chapter III. A stochastic model based on renewal theory (superposition of renewal
processes) is presented. This model is the basis for deriving estimations of the
spares failure rate. The rate is calculated from the approximately exponential
inter-failure times (times between consecutive failures in a multiple socket

system).




Chapter IV. System performance measures are derived; these are used to estimate the
time at which all spares burn out, and the approximate number of spares

required to reach a target year.

Chapter V.  Two alternative system allocation models are proposed. The reasons why they

are improvements over the current system are given.

Chapter VL. Results, Conclusions, and Recommendations for extending the lives of

light valves are provided.

Appendixes. A listing of available failure-time data for various light-valve types and
training unit locations. Simulation results and graphs validate the

renewal theory results about superposition of various numbers of simulator

sockets.

E. LIGHT VALVE SYSTEM DESCRIPTION

The following light valve operating system description and notation are essential in

understanding the presented analysis:

- Sites (S): There are currently nine operational sites (Miramar, El Toro, Beaufort,

Oceana, Whidbey, Lemoore, Yuma, Cherry Point and Cecil Field) that use
Talaria Light Valves.

- Light Valve types (L): Light Valves are of four different varieties ( G32p, G38, G39
and G43). They are operated independently of one another and

are identical within types.

- Number of Sockets (H): H is the number of light valve sockets of type
L at site S.



The single-gun light valve is a sealed vacuum tube containing a deformable oil-based fluid. It
uses an external arc lamp as a light source. Optically, it is similar to a slide or movie projector.
Light valves of different types are not interchangeable. The G43 and G32p variety are used in
single light valve (SLV) projectors. The G38 and G39 light valves operate, as pairs, in multiple
light valve projectors.

A light valve 1s replaced for two reasons. The first is a determination, made prior to actual
mechanical failure, by technical experts that the projector video output in the simulator has
degraded to unacceptable levels. Cavitating bubbles on the video display caused by the viscous
breakdown of the oil-based film in the light valve is the primary indicator of this impending failure.
The second reason is infrequent mechanical failures which are due to either poor light valve
workmanship or improper handling. Light valve failure updates are sent to ASO on a quarterly
basis. The data contain the recorded time of replacement (in hours) for non-RFI light valves that
failed at the site, and the usage time of light valves that are still operational at the time the report

is made.




II. MODELING LIGHT VALVE TIMES TO FAILURE

A. PARAMETRIC FAILURE TIME MODEL

15

10 —
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Figure 1. The histogram of the thirty-five failure times
from Miramar (Appendix A), has two modes or humps.
Notice that the breakpoint of the two modes is at
approximately 3500 hours. This is an initial indication
that a single mode parametric form may not accurately
fit the underlying distribution of the data.

A histogram is widely used as an initial exploratory data analysis tool. In Figure 1, the
histogram reveals a bimodal (two modes) tendency of the thirty-five Miramar failure times. An
explanation for this bimodal tendency is Martin-Marietta’s announcement of its impending
shutdown of Talaria light valve production led to the immediate loss of key personnel and a drop
in morale. These factors caused subsequent light valves produced to be of lower quality than the
original light valves which averaged four thousand hours. The Weibull distribution is often
appropriately used to model failure times of electronic components. However, the Weibull

density has only one mode; a fit of the Weibull to the G32P is only crudely satisfactory.



Weibull Probability Plot

80 10m 200 400 000
Maimum Liklihoed Estimates Hours

Shape Parameter : 3.78346
Scale Paameter : 44003

Figure 2. This graph is a plot of the thirty-five Miramar
failure times on Weibull paper. Data from a Weibull
distribution will plot along the straight line. In our case,
only the data points less than 3500 hours are along
this line. Values larger than 3500 hours appear to lie
along a different line.

Further analysis for this data set is performed with a Weibull Probability Plot (see Figure 2)
to show the initial guess of a bimodal distribution is justified. The suspected mixing of light valve
grades at Miramar cannot be accounted for using a single mode parametric form.

An approach to model bimodal data as recommended by Law and Kelton (1991), is to split
the data into two parts based on the histogram (for the above data this would be at 3500 hours),
and try a Weibull fit to each half. This splitting technique will lead to a model of the following

form:

pxW(e,, B,)+ (1p)xW(e,, B 1)

This model has five parameters to be estimated from the data (p, o, B,, &, ,). Where p
(the breakpoint) is the fraction of failure times smaller than 3500 hours. The alphas (¢ ,and o)
and betas (3, and 3, ) are the two sets of Weibull shape and scale parameters when fitted to

each half of the data. This parametric approach has the following drawbacks which make it an




inconvenient option at the operational level:

1. A plot of the data provides no strong physical motivation for any particular

parametric form.

2. The five parameters in Equation (1) must be estimated for each light valve type using a curve

fitting procedure called maximum likelihood estimators. This procedure requires computational

effort that is time consuming for a personal computer. Computations (means, variances, etc.) for a

five-parameter model would be difficult to implement in a spreadsheet.

3. The estimate of p may be inaccurate. Once the failure times are split into parts, there
is no clear way of knowing if data from the shorter life light valves may actually belong
to the longer life population, and vice versa. It is unclear how this inaccuracy affects the

final assessment (of time to system consumption of spares).

B. NON-PARAMETRIC MODEL

A non-parametric or distribution-free model (see Figure 3 below) can give quite efficient
approximations in circumstances such that no suitable parametric distribution is known or usable.
Also importantly, these approximations can be understood and implemented by nontechnically
oriented users. The simplest non-parametric model for the distribution of individual light valve
failure times is obtained by constructing the empirical cumulative distribution function (ECDF)
from‘existing failure data. This process is easy to explain and can be cqrried out on small
computers. The empirical cumulative distribution function can be smoothed if desired, but for a

reasonable amount of data (n = 20 or more failure tirhes) this is unnecessary.
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Figure 3. The Empirical Cumulative Distribution Function
(ECDF) provides insights into the general shape and
skewness of data fitted using non-parametric analysis. The
steepness of the slope from 3500 hours to 5000 hours
indicates that Miramar experienced a disproportionate
number of failures in this range.

We can define a ECDF from data representations X,;, X,, ..., X as

No. of Xs<x
F n(x)z—n—” (2)

This formula avoids the many problems in Equation (1). The ECDF is used as an exploratory tool

in this analysis to:

1. Graphically compare an estimate of the true distribution function of our data with the
distribution function of one of the fitted distributions in probability.
2. Randomly generate failure times in a simulation.

3. Gain insight into the general shape and skewness of the underlying distribution.

In this thesis, representations.of the form of Equation (2) are used to generate the ECDF
‘ reciprocal classically known as the empirical survivor function (ESF). The ESF will be used to
estimate the mean remaining life of a light valve which has lasted to some time (t). Equation (2) is

also used to describe the individual valve failure times, and then to describe the H-socket system




failure times. The use of ECDF to describe failure-time variability is conservative in that it makes
minimal assumptions about the failure process. It does assume that future failure times statistically
resemble those from the past, and that they are independent samples from a time-invariant
process, i.e., that there is no trend in the failure process. It also requires that a minimal amount of

historical data be available.
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III. DEMAND FOR SPARE BULBS: A STOCHASTIC MODEL

A. TIMES TO SYSTEM FAILURE

Provided T, is a random variable representing the time between successive failures and R is a
random variable representing the lifetime of a light valve, the decision-aid information in this
thesis can be supported by the following facts of probability theory.

Theorem 1.
If, in a renewal process, the inter-arrival times, T;s, are independent and exponentially

distributed with mean 1/ A, then the renewal process is a Poisson process with rate A

(Ross, 1993).

Theorem 2.
The superposition of a large number H, of independent renewal processes having the same

failure time distribution is asymptotically a Poisson Process with rate

H

A=——. 3
EIR] 3
See Karlin and Taylor (1975, pp.221-223).
An estimate of A is
H
P @
E[R)
Here,
N n ri
E[R] = Y- ®)

is an estimate of the expected mean failure time between renewals, i.e., individual failure times,
where the 1; s are the realized values of R, namely the observed failure times. Any system studied

consists of a training unit equipped with H light valve sockets (see Figure 4 below). The light

11



valves are kept under conditions that allow them to fail apparently independently after varying
operating times. Each socket gives rise to a sequence of renewal (replacement) times (realizations
of R) where: Ri(1), Ri(1) + Ry(2), Ry(1) + R(2) + R(3), . . .represent the times at which light

valves occupying socket/holei (i=1, 2, . . ., H) are renewed or replaced.

Failures

Socket r r r r . r
!l -
2 Yy r r r Yy r
H r vy r r r

Time S S

05 i 4000 8000 12,000
Pooled uhp+

Figure 4. With r representing an actual failure time, the
depicted pooled process shows that the time the first light
valve fails r,(1) is the shortest time in the process. We call
this initial failure t(1). The next smallest failure ry(1) in the
system occurs as the first failure from socket 2. If we add
t(1), the time the first valve failed, to t(2), the time between
the first and second failures, we have t(1) + t(2) as the
second smallest system failure time. We can continue in this
manner adding inter-failure times for the entire process.

The system renewal/replacement times are the merged (pooled) times of replacement for the
individual sockets/holes. For instance, if all H sockets/holes start with new light valves then T(1),

the time to first system failure is the minimum of (the first) H failure times, i.e.,

T(1) = min( Ry(1), Ry(1),...,Ry(1)). (6)

12




IfRy(1) turns out to be the minimum failure time, then it is replaced by a light valve with life time

R,(2), and the time to second system failure is

T(1) + T2) =min(Ry(1), Ry(1) +Ry(2), Ry(1),. .., Ry(1)) ()

and so on.

B. SUPERPOSITION OF RENEWAL PROCESSES SIMULATION: RESULTS
The applicability of Theorem 2, for finite H, can be tested for accuracy with a simulation (see
Appendix B) to see if the pooling together of data from a finite number of sockets at a site
resembles a Poisson Process. Three checks can be made from the simulated inter-failure times
(T's) to validate the model.
1. Graph the system inter-failure times. Now examine if the histogram of the

simulated times is approximately exponential.

2. Compute the mean and standard deviation of system inter-failure times. The standard

deviation and mean of the inter-failure times should be approximately the same.

A
3. Confirm that for the system, the simulation failure rate is approximately H / E[R].

The data in Appendix A, of pooled G32p failures at Miramar, were used in the simulation.
The accuracy of the model was checked with H=2, 5, and 8 pooled sockets. Results of simulation

system inter-failure times are summarized below.

13



No. Pooled Estimated Mean Number of Simulation Statistics for
Sockets Failures per 10,000 hrs. System Inter-Failures
Theory Results / Simulation Results Mean Standard Deviation
2 511 / 496 20165 1269.5
5 12.79 / 12.06 828.7 716
8 20.46 / 19.28 518.6 4915

Table 1. The estimated mean number of failures in 10,000 hours is computed through
theoretical and simulation computations. The table highlights that the simulation failure
rate which is the reciprocal of the mean number of failures is approximately the same as
provided by the theoretical computations regardless of the number of sockets pooled.
Notice that the values for the mean and standard deviation gradually get closer as the
number of sockets increases. This correlates with a Poisson distribution.

1. In Appendixes C, D, and E note that the histogram appears to indicate that the
underlying distributions are better approximated by the exponential distribution as H
increases. The straightness of the quantile-quantile exponential plots also confirms the

increased validity of an exponential assumption for increasing H.

2. The mean and standard deviation of inter-failure times in Table 1 is an additional

affirmation of result (1).

3. The theoretical and simulation failure rates (also in Table 1) are approximate_ly the

same in the three cases.

We conclude that the superposition of system renewal times to create a sequence of
consecutive system inter-failures may be adequately represented by a Poisson process. If anything
the Poisson projection is even more variable than is suggested by the simulation, since the

simulation indicates that the standard deviation of system inter-failure times is somewhat smaller

than their mean.

14




A
Example 1. Computation of the estimated failure rate A .

Using the Miramar G32p data set in Appendix A, where the r; s are the 35 historical failure

times in column (1) and H=10is the number of installed sockets in column (2), we can compute

the estimated failure rate as follows:

1. Compute the estimate of the expected mean failure time:

A n r.
E[R] = ¥ - = 39087,

i=1 N
2. Now compute the estimate of the failure rate as

A= H 10139087 = 0002558,

A
E[R]
This says light valves will fail at a rate of 0.002558 light valves per hour or 25.58 light valves per

10,000 hours, with random variability described by the Poisson distribution; for example the

variance is

Va/;[R] = EA[R]. ()

15
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IV. ESTIMATION OF SYSTEM PERFORMANCE MEASURES

A. SPARES USAGE STATISTICS

Two important estimations of spares usage can now be found using historical data and
previously discussed formulas. They are:
1. The estimate of the mean time to spares depletion.
2. The estimate of the expected number of spares needed until some specified time t.
The estimate of the mean time to use n spares and the corresponding variance are two statistics
needed to answer various probability questions about the approximate time at which the spares
will be exhausted. If X; is a random variable representing the life of spare i and n is the total

number of spares, the two statistics can be estimated as follows:

X, = the time to failure of the first spare,

X, = the time to failure of the second spare,

X, = the time to failure of the n spare.

Then
Sa =X, +X, +...+ X, ©)

represents the waiting time until n spares have failed. Since each spare will be used in the pooled
process (which we have shown to be approximately a Poisson Process), they are assumed to be
installed and to fail at the same rate as the non-RFI valves. We call that rate A . Then using
results in Theorems 1 and 2, the random variable S, has the gamma distribution, since a sum of
n independent exponentials is distributed as Gamma (n, A ). The gamma distribution has mean =

n/A and variance = n/A2. The formulae to compute estimates of the mean and variance are as

follows:

17



E[S,] =(n/ A)=nx(E[R]/H), (10)
and
VarA[s,,] =(n/ )tz) = nx(EfR] / H)?. (1)

The estimate of the expected number of spares needed is based on the number of failures in
some time t. We can make use of one of the most important results of Renewal Theory to provide
a formula to estimate the number of failures in some arbitrary time t. From Ross (1993), N(t) (the

number of renewals in some time t) is Poisson distributed. The expected number of renewals in

some time t is E[N(t)] = At. The estimate of this expected value is

E[N()] = At= (H/E[AR])Xt. (12)

Since the mean and variance are the same for a Poisson distribution, we have

Var[N(t)] = 3&t =(H/ EA[R]) xt. (13)

B. PROBABILITY APPROXIMATIONS

We apply Equations (10), (11), (12), and (13) in two important approximations. Since we

can approximate a Poisson process with a normal distribution for large t, and the number of

renewals, N(t) has mean E[N(t)] and variance Var[N(t)], the first approximation is

(14)

PONG < 1) - q)( " BN ‘5].

>

A
Var[N()]

The number 0.5 in Equation (14) is a continuity correction.

18




The second approximation can be obtained by noting the following quotation from Ross

(1993, pg.305), “the number of renewals by time t is greater than or equal to n if and only if the

nth renewal occurs before or at time t.” This says that N(t) >n < S, <t and thus the normality

assumption for N(t) applies for S, with large n. Using estimates from Equations (12) and (13) we
now have

PS,>0=~1-®

' - E[fvn]]
) (15)

A

Var[S ]

Based on approximations (14) and (15), we can answer many important questions about spares

usage. One type of question that can now be answered is in example2.

Example 2. What is the estimated number of G32p spares needed for Miramar to
have 10,000 hours of system operation with 95% reliability?

Using the Miramar data set in Appendix A and previous computations. We are given:
A
1. E[R] = 3908.7 hrs,

2. H= 10 sockets,
3.1=10,000 hours .
Now compute the estimates of the mean and variance of N(t) :
N N
E[N(t)] = (H/E[R]) xt = (10/3908.7) x 10,000 = 25.58
and the
N A
Var[N(t) = E[N(t)] = 25.58.
We want
95 < P(N(t) <n)
which provides at least 95% reliability of the number of failures in 10,000 hours of system

time. We have stated that N(t) is approximately normal for large t. The above equation can be
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restated as

95 < P

N@®) - E(N@) _ n - 25.58 - .5]

VVar(NG) /25.58

or in terms of the standard normal random variable Z, as

95<p(Z<n—25.58—.5)-
* - t .

¥25.58

This in turn gives
n - 26.08

1.645 = ®71(.95) <
5.06

Therefore,

n > (1.645)(5.06) + 26.08 = 34.4

So, there is a 95% or higher probability that the number of failures in 10,000 hours, will be less

than or equal to 34. Confidence limits can be put on the estimate, but this step is omitted.

C. EXCESS LIFE OF INSTALLED LIGHT VALVES

The following non-parametric calculation is needed to account for the light valves that are

still operating. Since their mean remaining life impacts the date at which all spares will burn out.
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Figure 5. The Empirical Survival Function (ESF) is 1-ECDF.
The ESF is used to estimate the mean remaining life of a
light valve. We partition the area under the ESF to the right
of t (the age of the light valve of interest) into rectangles of
height 1/n similar to the one in the figure. Now we sum all the
rectangles to the right of t divided by the proportion of data
greater than t to find the mean remaining life.

The mean excess life of installed light valves called the conditional mean remaining life of a

unit of age t by Barlow and Proschan (1975) can be calculated by using the following formula:

E[X - X > t] =}(1—‘F-(1‘M . (16)
t-E()

One method to approximate this integral is to use a Riemann sum approach of adding
together the collection of rectangles which represent the area under the ESF to the right of t (see
Figure 5 above). In the empirical survivor function, the failure time that is equal to t or the next
largest failure time is assigned the notation x(j ). Since this is an empirical survivor function, the
height is always 1/n. The base is the difference between the next largest failure time and t. This

must be done for all n-(j-1) failure times which are greater than or equal to t (Figure 6 below).
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1/n
t x(j)
1/m
t - x(j+1)
1/n
t : x(n)

Figure 6. A closer look at Figure 5 reveals that a Riemann
sum approach can be applied to add each area.

We can sum the area of each rectangle as follows:

(I/n)x(x-1) + (/mx(x,,-0) + .. + (Un)x(x,-?) (17)

VAN
Now dividing by the denominator 1-F(t), in Equation (16), which may be estimated as the
proportion of failure times greater than t, we have

UmG) + (=D + o+ @, 1]

18
[n-(G-1/n (1)
After canceling n in the numerator and denominator, the final form is
(c-0) + =D + o+ (x,0D) (19)

n-(j-1)

22




V. ALLOCATION MODELS

There isn’t a current system to track light valve spares consumption rates, or a concrete plan
on how many refurbished light valves will be needed. At present, each site maintains its own
spares while ASO contracts refurbished light valves based on individual site requisition forms. The
problems with this spare’s replacement policy include:

1. There is no centralized storage site for spares or refurbished light valves.

2. Individual sites may have unfairly hoarded their own collection of light valves.

3. It has previously been impossible to numerically estimate when all spares will be
exhausted. _

4. Some sites will start using the shorter-lived refurbished light valves while less needy
sites will still have the longer lived spares.

In this chapter, we address two allocation models. Since no site wishes to run out of spares,
a policy of maintaining 100% sparing (each site will have at least one spare for each operating
socket on hand) will be assumed. The system thus now fails when 100% sparing is compromised.
As the current spares are exhausted, this on-site inventory will eventually be exhausted; it may be

replaced by refurbished valves.

A. MODEL 1

This system consists of one central (storage and distribution) depot per coast (see Figure 7
on next page) , n spares per coast at time zero, H pooled sockets, four light valve types and one
repair facility. Each system of several light valves is parallel. A valve in spare status cannot fail.
When an operating valve fails it is immediately replabed by a spare. Repairs are assumed to begin
immediately. The time until all spares fail is approximately Gamma distributed since the system
inter-failure times are approximately exponential with mean equal to that of the original failed
light valves divided by H. The introduction of repaired light valves into the system will change

that mean.
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Figure. 7 The network in Model 1 consists of one central
hub on each coast. This facility will keep track of spares
allocations for the other sites on its coast.

This model offers several attractive features over the old system.

1. Only two sites (I recommend the two largest sites per coast) will contact ASO with

requisitions, quarterly updates, etc. Since the entire coast will work as one system all

other sites will work directly with the centralized site.

2. Shipments to and from the repair facility should be significantly reduced since they will
only come from two sites. The shipments can be scheduled to occur at regular

intervals, i.e. monthly and in bulk since we now have a method of predicting failure

patterns and a policy of 100% sparing.

Shipments between sites can be handled in some cases by military transport (military

air, trucks, etc.) instead of using commercial shipments form the repair facility directly
to each site.
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4. System can be tracked and maintained on a simple spreadsheet.

B. MODEL 2

The model represented in Figure 8 is to have a centralized site near the repair facility handle

the system operations.

Repair Facility

Figure 8. The network in Model 2 has one hub to allocate
spares.

The same advantages as in Model 1 are maintained, but shipments from West to East coast may

be time consuming even with military transport.
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SYSTEM RESULTS FOR MODEL
Expected Hours until
Light Valve Type(L)  No. of Spares(n) No. of sockets(H) Spares Depletion Standard Deviation
G32p 69 48 5,716 688
G43 69 29 8,553 1027.3
G38 26 8 12,7725 2504.9
G39 20 8 8,767.5 1960.5

Table 2. The estimated time in hours till depletion of spares for each light valve type is

computed using the complete data set in Appendix E.

Table 2 provides an estimate of the system time until all spares are depleted. This time can be

adjusted to correspond with actual usage hours at the operational level. The table assumes a

network like Model 2, where there is one centralized site that stores all spares. Model 1 will have

two similar output tables. The data used in the table are from all sites as reported in the quarterly

update as of October 6, 1995 (Appendix F).
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VL. RESULTS, RECOMMENDATIONS, AND CONCLUSIONS

A. RESULTS

A spreadsheet can be easily developed from these formulae to track light valve spares
allocations based on the formulas developed in this thesis. The failure rate must be based on actual
hiétorical data. The formula’s predictive ability will be significantly enhanced when at least 25
failures of each type of light valve will have occurred. There is some evidence that repaired light
valves have a shorter time to failure than the original set, to date the repair facility has only
repaired six light valves. The two allocation models offer key savings in shipment cost and
centralization of storage and system maintenance. Having one or two sites control all stored
valves allows for a more accurate inventory of spares and refurbished valves. The policy of 100%

sparing offers a method, based on system failure rates, of planning ahead without taking the risk

that a site will fail to meet its operational schedule.

B. RECOMMENDATIONS

1. Alternate Arc Lamps so that older Light Valves use newer Arc Lamps.

Explanation:

An arc lamp generally lasts 1000 hours (at 1000 hours the manufacturer recommends
removal to prevent a possible arc lamp explosion). During the first 0-500 hours of life the arc
lamp maintains 70% of its luminance. If an arc lamp within this range is paired to a light valve
near the end of its theoretical operational life (3000 hours or greater), it could provide adequate
performance to offset the effects of a faltering light valve. Alternately, the opposite strategy of
coupling a newer light valve (0-2000 hours) with an arc lamp within the last 500 hours of its life
is equally valid. Although this has not been tested, conversations with technical representatives at
Miramar Air Station confirm the feasibility of this idea. The maintenance time to interchange the

arc lamps is approximately four hours.
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2. A uniform policy of either operating light valves continuously 4-5 days per week or
turning the light valves on and off every day must be established.
Explanation:
It is generally believed that continuous shutdowns and start-ups wear more heavily on
electronic components than does continuous running. The light valve is subjected to power
spikes with each start-up. Irregular maintenance start-ups can double or triple the weekly

wear on the valves. Currently most sites use the daily start-up shutdown method.

3. Install an additional cooling fan in MLV projectors.

Explanation:

Two types of bulbs, the G38 and G39, are used as pairs in a MLV projector. The additional
light valve leads to increased temperature and shorter times to failure (probably because
degradation of the oil-based film has increased). Many G38 and G39 valves failed around 3000
hours; this is far short of the 4000 hours achieved by G43 and G32p light valves when used in
SLV projectors. A cooling fan would bring internal temperatures closer to the range in SLV

projectors.

C. CONCLUSIONS

The only long-term fix to the Talaria light valve problem is to find a suitable replacement.
The three companies that show the most promise are Ampro, Barco, and Texitron. Barco actually
has a product ready to test and at an advantageous cost to the Navy. It is recommended that only
enough money be allocated to repairing non-RFI light valves to guarantee 100% sparing since
the newer light valve replacement will have a significant cost advantage over paying $8050 for a

product whose mean life is only 2500 hous (as advertised by Vacuum Optics).
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APPENDIX A. MIRAMAR G32P DATA SET

COLUMN 1. HISTORICAL FAILURE TIMES COLUMN 2: INSTALL TIMES
(Operational time in hours at failure) (Operational time in hours as of October 6,1995)
4721 5977 45
4085 1271 661
1085 4947 805
4977 2160 939
3861 2714 672
5218 2494 4015
4056 3771 4310
4288 4000 3884
4961 5641 3949
3558 . 4790 1941
3574 5046
4801 5372
710
3908
3522
4573
4111
4927
2497
5111
3899
5101
4987
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APPENDIX B. SUPERPOSITION SIMULATION: PSEUDOCODE

This pseudocode can be run with simulation software or a statistical package to
generate inter-failure times from historical data.

Steps:

1. Construct a piecewise-linear empirical cumulative distribution function (ECDF) from the

original data using the smoothed version of Equation ( 2)

(0 i x<X
F (%)= i1, g if X <x<X
nse n-1 (n—l)(X(,-+1)'X(i)) o h
1 if X <x

m~

fori=1,2, ..., n-1.

Here the Xs are the Ordered Statistics. They correspond to the numerical position of the
data when sorted from smallest to largest (X, is the shortest lifetime and X 1s the longest).
2. Utilizing an Algorithm by Law and Kelton (1991 pp.495), the following Pseudo Code

generates 500 random failure times from the ECDF function to simulate actual failure times

for each of the H sockets:
 for f= 1:500 do begin
for H=1:10 do begin

Generate U~U(0,1), let P=(n-1)U, and let I= |P| +1
Return Xy - X + (P-F+1)(X 1) - X)-
end

end

3. Within each of the H sockets, run a cumulative total to add the lifetimes from left to right. Y
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corresponds to the simulated clock time from time O that each X failed.
YIH = XlH
You = Xon + Xi
You - Xou + Xon + Xy

Ysoou = Xsoon + Xggou + -+« + Xy

4. Store all Yg; in a single 1x(500xH) vector ( this pools all sockets into one) and sort from

smallest to largest.

T, = smallest Y

T, = next largest

Tsooau = largest

5. Compute (500xH) inter-failure times X,. These times represent the times between the first
failure T, (regardless of which socket it was in since they are now considered to be one pool)
and the second failure T, etc. for all light valves.

X,=T,
X,=T,-T,
X;=T,-T,

Xsooxr = Tsooxr = T(SOOxH)-l
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Counts Per Cell

APPENDIX C. SUPERPOSITION OF EIGHT G32P SOCKETS

Histogram of 4000 System Inter-Foiure Times
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System Inter-Failure Time (Hours)

Figure 1. The histogram is a plot of 4000 pooled inter-failure times from a system
with eight sockets (500 failures per socket). Its exponential shape is an indication that
the pooling of eight sockets at a site, or system of sites, is asymptotically a Poisson
Process in accordance with Theorem 2.The histogram is generated from the

simulation in Appendix B.
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Quantile-(Quantile Plot of 4000 Pooled Inter-Foilure Times,
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Figure 2. The Quantile-quantile (Q-Q) plot is used to compare the quantiles of the
5000 pooled inter-failure times against the quantiles exponential distribution. If the
underlying distribution is exponential the is a straight line. The plot is a near straight
line which gives strong confirmation to the assumptions in Figure 1.
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APPENDIX D. SUPERPOSITION OF FIVE G32P SOCKETS

Histogram of 2500 System Inter-Failure Times
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Flgure 3. The histogram is a plot of 2500 pooled inter-failure times from a system with
five sockets (500 failures per socket). Its strong exponential shape is an indication that the

pooling of five sockets at a site, or system of sites, is asymptotically a Poisson Process in
accordance with Theorem 2 of Chapter 2.
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Figure 4.The Q-Q plot of the 2500 pooled inter-failure times plotted against the
exponential distribution plots as a near straight line. This provides additional
confirmation of the assumptions in Figure 3.
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APPENDIX E. SUPERPOSITION OF TWO G32P SOCKETS

Histogrom of 1000 System Inter-Failure Times
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Figure S. The histogram of two pooled G32P sockets does not indicate that the
underlying distribution of the 1000 inter-failure times is exponential. Thus, we can
not assume that the pooling of two sockets is a Poisson Process.
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Figure 6. The Q-Q plot of two pooled sockets takes on a curved shape when plotted
against an exponential distribution. This is clear evidence that the generated inter-
failure times did not come from an exponential distribution.
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APPENDIX F. LIGHT VALVE INVENTORY DATA

The following data is an inventory of light valve failure times, installed times, and

spares as of October 6, 1995.

Site Type Failure Times Survival Times Spares
Beaufort G43 831 1652 5
1071 2992
4159 2697.
4116
4159
Cecil Field G32p 2896 2614 1383 5347 7
3386 4629 1984 518
50 4300 3379 1842
8193 2278
4304 1573
G43 730 2265 2130 21
3700 7210 1842
3442
Cherry Pt. G32p 955 4633 30 278 7
937 4170 1501 925
1321 4250 1495 832
4848 0 2178 2100
4773 5034 3245 2517
4880 4019 5185
4470 0 2623
4527 896
G43 2097 50 3076 9
3342 1
El Toro G43 4646 4537 1070 20
2815 2420
2554 0

Table 1. The table list light valve experience data for all sites which report quarterly
data to ASO.
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Site ”.r'ype Failure Times Survival Times Spares
Lemoore 4100 4150 3924 0
4080
G43 4100 4320 3369 2435 8
4438 4150 1022 317
4080 4000 655 126
4200 4280 105 663
4150 4160 1280 71
4020 4220 1371
Mirimar  G32P 4085 5372 2089 19
4977 5977 979
5218 1271 582
3558 4947 2244
3522 2160 1274
4573 4500 1345
4111 5641 2227
5111 5046 2084
3899 4928 3380
4156 4000 1481
G38 3728 944 9
4479 1589
4090 1480
4613 1538
G39 4176 4100 1538 6
2526 4613 1489
3729 1074
2915 944
Oceana G32P 330 3940 1240 1719 7
2350 2900 809
3940 440 2253
4035 716
G38 3787 3877 1360 5
3663 3732 1502
3400
G39 3663 3877 1300 4
3787 1682 2884
Yuma G32P 5000 2000 4048 255 21
5200 0 2400 164
4863 3280 206
5000 153
5200 134
G43 1850 1028 6
2500 1536
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